List of ZFC Axioms
18 Nov 2024Mathematics
Set Theory
Name | Meaning |
---|---|
Extensionality | Set is an unordered collection of elements. |
Existence* | There exists the empty set. |
Pairing* | From $X, Y$ follows $Z = \lbrace X, Y \rbrace$. |
Union | From $X = \lbrace Y_i \rbrace$ follows $Z = \bigcup Y_i$. |
Power Set | From $X$ follows $\mathcal{P}(X)$. |
Separation Schema** | From $X$ follows $Y = \lbrace y \in X : \phi(y) \rbrace$, where $\phi$ is a first-order formula. |
Infinity | There exists a set containing all the natural numbers. |
Regularity | $\in$ is a well-ordering. |
Replacement | From $X$ follows $f[X]$, where $f$ is a class function definable in first-order logic. |
Choice | Every collection of nonempty sets $\lbrace X_i \rbrace$ has a choice function. |
Name | Formula (Free variables are to be quantified by $\forall$) |
---|---|
Extensionality | $X = Y \leftrightarrow (z \in X \leftrightarrow z \in Y)$ |
Existence* | $\exists Z : z \not\in Z$ |
Pairing* | $\exists Z : z \in Z \leftrightarrow (z = X \lor z = Y)$ |
Union | $\exists Z : z \in Z \leftrightarrow \exists x \in X (z \in x)$ |
Power Set | $\exists Z : z \in Z \leftrightarrow (w \in z \rightarrow w \in X)$ |
Separation Schema** | $\exists Z : z \in Z \leftrightarrow (z \in X \land \phi(z))$ |
Infinity | $\exists Z : \varnothing \in Z \land (z \in Z \rightarrow z \cup \lbrace z \rbrace \in Z)$ |
Regularity | $\exists x \in X : \forall y \in X [ y \not\in x]$ |
Replacement | $\displaylines{[\forall x \in X \; \exists! y :\phi(x, y)] \rightarrow [\exists Y \; \forall x \in X \; \exists y \in Y : \phi(x, y)]}$ |
Choice | $\displaylines{\varnothing \notin X \rightarrow \exists f : X \rightarrow \bigcup X [ f(x) \in x ]}$ |
Remarks.
- Regularity is equivalent to the following:
-
Those marked by (*) can be derived from the Separation.
-
Those marked by (**) can be derived from the Replacement.
Replacement is strictly stronger than Separation:
- Separation can be stated as: If $X$ is a set and $f$ is a function, then $f[X]$ is a set.
- Replacement can be stated as: If $X$ is a set and $f$ is a class function, then $f[X]$ is a set.
The proof of following theorems require Choice.
- If $f: X → Y$ is surjective, there exists a subset $Z$ of $X$ such that $f\vert_Z$ is bijective.
- If $\varnothing \not\in \lbrace X_i\rbrace$, then $\prod X_i \neq \varnothing$.
- Well-ordering Principle. Every set can be well-ordered.
- Zorn’s Lemma. If every chain of $(X, <)$ is bounded in $X$, $X$ has a maximal element.
The proof of following theorems require Replacement.
- $\omega + \omega$ exists.
- Completeness of Ordinals. Every well-ordered set is order-isomorphic to a unique ordinal.