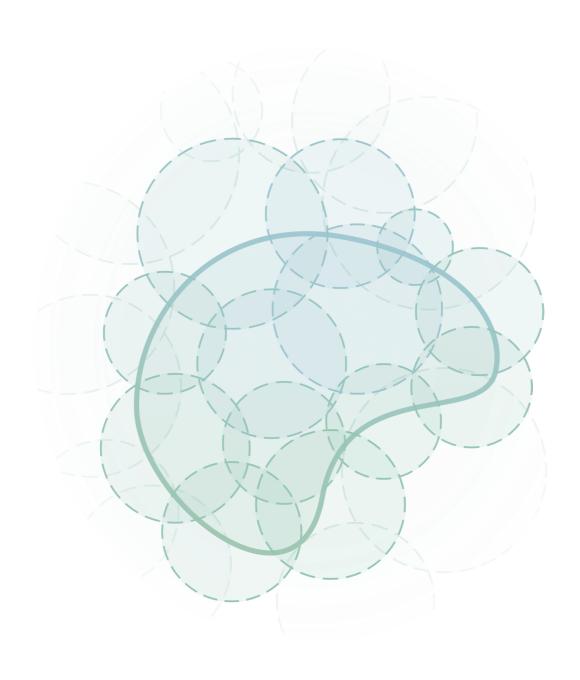
일반위상 복습 노트

디멘(최정담)



1. 기초 개념

열린집합과 닫힌집합

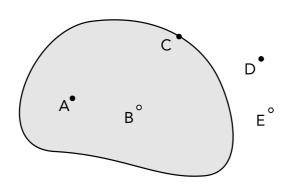
X는 열린집합이다 iff

- X = X°
- X는 어떤 기저 집합들의 합집합이다.
- X의 여집합이 닫힌집합이다

X는 닫힌집합이다 iff

- X = CI(X)
- X' ⊂ X
 - X의 여집합이 열린집합이다

점들의 분류



	x	X' 곁에 친구(자신제외)	int(X) = X° 곁이 모두 친구	bd(X) = ∂X 곁에 친구 _(자신포함) 와 적	cl(X) = X̄ 곁에 친구(자신포함)
Α	✓	✓	✓	X	✓
В	Х	✓	X	✓	✓
С	✓	✓	X	✓	✓
D	✓	X	X	✓	✓
E	X	X	X	Х	Х

$$X \cup X' = X^\circ \sqcup \partial X = \overline{X}$$

위상의 기저

정의. \mathscr{D} 가 공간 X의 기저이다 iff 다음 두 조건을 만족

- i. (Covering) \mathcal{B} 가 X의 덮개이다.
- ii. (Closure under intersection) $\forall B_1, B_2 \in \mathscr{B} \ \forall x \in B_1 \cap B_2 \ \exists B_3 \in \mathscr{B} : x \in B_3 \subset B_1 \cap B_2$

 $U \in \mathcal{T}(\mathcal{B})$ iff either

- $\forall x \in U \ \exists B \in \mathcal{B} : x \in B \subset U$
- $\exists \mathscr{B}' \subset \mathscr{B} : \cup_{B \in \mathscr{B}'} B = U$

	기저
R	{ (a, b) : a < b }
\mathbb{R}_K	$\{ (a, b), (a, b) - K : a < b \} \text{ where } K = \{ 1/n \mid n \in N \}$
\mathbb{R}_l	{ [a, b) : a < b }

 $\mathbb{R} \subsetneq \mathbb{R}_K, \mathbb{R}_I$ 이고 $\mathbb{R}_K, \mathbb{R}_I$ 은 대소 관계가 없음

연속함수

f: X → Y는 연속함수이다 iff

- Y의 열린집합의 역사상이 X의 열린집합이다.
- Y의 닫힌집합의 역사상이 X의 닫힌집합이다.
- X의 부분집합 A에 대해 f(cl(A)) ⊂ cl(f(A))이다.
- 임의의 $x_n \to x$ 에 대해 $f(x_n) \to f(x)$ 이다. <u>단</u>, X는 1차 가산 공간.
- ϵ - δ 정의. 단, X는 거리 공간.

열린함수와 닫힌함수

연속함수 f: X → Y는 닫힌함수이다 if

- f는 닫힌집합을 닫힌집합으로 보낸다.
- cl f(A) c f(cl A)이다.
- X가 콤팩트하고 Y가 하우스도르프이다.

연속함수 f: X → Y는 열린함수이다 if

- f는 열린집합을 열린집합으로 보낸다.
- f(int A) c int f(A) 이다.
- f는 연속이고 단사이다.

위상 공간들의 목록

https://topology.pi-base.org/

2. 곱 토폴로지와 몫 토폴로지

곱 토폴로지

정의. 두 위상공간

1.

몫 토폴로지

정의. 위상 공간 X와 <u>위상 공간</u> Y에 대해 $q: X \rightarrow Y$ 가 전사이고, 포화된 열린 집합을 열린 집합으로 보낼 때, q를 몫사상이라고 한다.

정리.

- 1. 연속이면서 열린 전사 사상은 몫사상이다.
- 2. 연속이면서 닫힌 전사 사상은 몫사상이다.

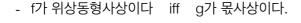
정의. 위상 공간 X와 $\underline{\text{Ol}}$ A에 대해 전사 사상 q: X → A가 주어졌을 때, q가 몫사상이 되도록 하는 A의 토폴로 지가 유일하게 존재하며 몫 토폴로지라고 한다.

정리. p: X → Y가 몫사상이고, g: X → Z가 각 y \in Y에 대해 p⁻¹({y})에서 항등인 사상일 때, fp = g인 사상 f가 존재한다. 또한,

- f가 연속이다 iff g가 연속이다.
- f가 몫사상이다 iff g가 몫사상이다.

(p 다음 g)

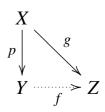
따름정리. $X^* = \{ g^{-1}(\{z\}) : z \in Z \}$ 에 몫 토폴로지를 주어 표준적 사상 p: $X \to X^*$ 가 몫사상이 되도록 한다. 이 때, fp = g인 전단사 연속 사상 f가 존재한다. 또한,

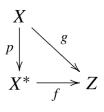


Remark. 즉, "같은" 몫사상은 "같은" 몫 토폴로지를 정의한다.

- X*가 하우스도르프이다 if Z가 하우스도르프이다.

(g 다음 p)





2. 연결성

연결집합

정의. X가 연결집합이다 iff either

- $\nexists U, V \subset_{op} X : U \sqcup V = X$
- X의 열린닫힌집합은 Ø과 X이다.

정리.

- (별 정리) 어떤 점을 공통으로 가지는 연결집합들의 합집합은 연결집합이다.
- (샌드위치 정리) A가 연결집합이고 A c B c cl(A)라면 B는 연결집합이다.

보존 정리.

- 연결집합의 연속상은 연결집합이다.
- 연결집합의 유한곱은 연결집합이다.

선형 연속체

정의. L이 선형 연속체이다 iff 다음 두 조건을 만족

- i. (조밀성) ∀x, y ∈ L ∃z ∈ L : x < z < y
- ii. (LUB) S c L이 상계를 가지면 상한을 가진다.

정리. L이 선형 연속체라면 L과 더불어 L의 반직선과 구간들이 연결집합이다.

증명.

- 1. U ⊔ V = L일 때, a ∈ U, b ∈ V에 대하여 U' = [a, b] ∩ U, V' = [a, b] ∩ V는 [a, b]의 분할이다.
- 2. LUB에 의해 c = sup U', d = sup V'이 존재한다.
- 3. c = d0 경우 U'과 V'의 열려 있음에 모순된다.
- 4. c < d, c > d인 경우 조밀성에 의해 c, d 사이의 e가 존재하여 모순을 일으킨다.

따름정리.

- i. R은 연결집합이다.
- ii. **(중간값 정리)** f: [a, b] $\to \mathbb{R}$ 은 f(a)와 f(b) 사이의 임의의 값을 함숫값으로 가진다.

3. 콤팩트성

정의

콤팩트compact. X의 모든 열린덮개는 유한한 부분열린덮개를 가진다.

점렬 콤팩트sequentially compact. X의 모든 무한수열은 수렴하는 부분수열을 가진다.

극점 콤팩트limit point compact. X의 모든 무한부분집합은 극한점을 가진다.

보존 정리

- 콤팩트 공간의 닫힌 부분공간은 콤팩트하다.
- 콤팩트 공간의 연속상은 콤팩트하다.
 - 따름정리: (최대·최소 정리) f: X → ℝ이 연속이고 X가 콤팩트라면 f는 최대값·최소값을 가진다.
- 콤팩트 공간의 임의곱은 콤팩트하다. (티호노프 정리, 선택 공리를 전제)

X가 위상 공간일 때,

- 콤팩트 → 극점 콤팩트
- 점렬 콤팩트 → 극점 콤팩트

X가 거리 공간일 때,

- 콤팩트 ↔ 점렬 콤팩트 ↔ 극점 콤팩트
 - 콤팩트 → 점렬: 일반적으로 성립
 - 점렬 → 극점: 볼차노-바이어슈트라스 논증
 - 극점 → 콤팩트: 르벡 보조정리

르벡 보조정리. 콤팩트 거리 공간 (X, d)의 각 열린덮개 \mathcal{C} 는, 임의의 x에 대해 어떤 C $\in \mathcal{C}$ 가 존재하여 B(x; δ) \in C이도록 하는 양수 δ를 가진다.

증명.

- 1. X가 콤팩트이므로 \mathcal{C} 의 유한부분덮개 \mathcal{C}' 이 존재.
- 2. $f(x) = \sup \{d : B(x; d) \subset C \cup C \in \mathcal{C}' \cup \mathbb{Z}\}$ 는 연속임.
- 3. f의 정의역이 콤팩트이므로 f는 최솟값 $\delta \neq 0$ 을 가짐.

따름정리.

- i. (균등연속정리) f: X → Y가 연속이고 X가 콤팩트라면 f는 균등연속이다.
- ii. (**적분가능성 정리)** f: [a, b] → ℝ가 연속이라면 리만 적분 가능하다.

국소 콤팩트

정의. $x \in X$ 에 대해 x의 어떤 근방을 포함하는 어떤 콤팩트 공간 K가 존재할 때, x에서 국소적으로 콤팩트하다고 한다.

X가 하우스도르프일 때 정의. 임의의 $x \in X$ 의 근방 U에 대해 어떤 근방 V가 존재하여 cl(V)가 콤팩트하고 cl(V) c U이다.

한점 콤팩트화 정리. X가 한점 콤팩트화 가능할 필요충분조건은 X가 국소 콤팩트 하우스도르프인 것이다.

즉, 다음을 만족하는 공간 Y가 존재할 필요충분조건은 X가 국소 콤팩트 하우스도르프인 것이다.

- 1. X는 Y의 부분공간이다.
- 2. Y X = {y₀}이다.
- 3. Y는 콤팩트 하우스도르프이다.

추가적으로 위의 조건을 만족하는 Y는 동형성에 대해 유일하다.

4. 가산 공리

가산 공리

정의. \mathscr{B}_{x} 가 점 x에서의 기저이다 iff x의 모든 근방 U에 대해 x \in B \subset U인 $B \in \mathscr{B}_{x}$ 가 존재 정의.

- 1차가산: X의 각 점이 가산 기저를 가진다.
- **2차가산:** X가 가산 기저를 가진다.
- **분리가능separable:** $\exists S \subset X : cl(S) = X, S는 가산$
- 린델뢰프: 임의의 X의 열린덮개가 가산인 부분열린덮개를 가진다 (약한 콤팩트성)

X가 위상공간일 때,

- $\{x_n\} \subset A$ 에 대해 $x_n \to x$ 라면 $x \in Cl(A)$ 이다. $x \in Cl(A)$ 라면 $x_n \to x$ 인 $\{x_n\} \subset A$ 가 존재한다.

X가 1차가산 공간일 때,

- f가 연속일 때 $x_n \to x$ 라면 f(x_n) \to f(x)이다. 임의의 $x_n \to x$ 에 대해 f(x_n) \to f(x)라면 f는 연속.

보존 정리.

- 1차가산/2차가산/분리가능 공간의 부분공간은 1차가산/2차가산/분리가능 공간이다.
- 1차가산/2차가산/분리가능 공간의 가산곱은 1차가산/2차가산/분리가능 공간이다.
- cf. <u>린델뢰프 공간에 대해서는 성립하지 않음</u>

린델뢰프 × 린델뢰프 ≠ 린델뢰프: Sorgenfrey plane

린델뢰프의 부분공간 ≠ 린델뢰프: Ordered square

but 린델뢰프의 닫힌 부분공간 = 린델뢰프 (note: 콤팩트의 닫힌 부분공간 = 콤팩트)

cf. 비가산 곱에 대해서는 성립하지 않음, see Product of index spaces

함의 관계.

- 거리 공간 → 1차 가산
- 2차 가산 → 1차 가산 / 린델뢰프 / 분리가능
- **거리 공간에서,** 2차 가산 ↔ 린델뢰프 ↔ 분리가능

예시

	1차 가산	2차 가산	린델뢰프	분리가능	거리 공간
R	✓	✓	√ (2C)	√ (2C)	✓
\mathbb{R}_K	✓	✓	√ (2C)	√ (2C)	X
\mathbb{R}_l	$ \mathscr{\bullet} \times = \{[x, x + 1/n)\})$	X (Given $\mathcal{C} = \{[a_n, b_n)\},$ $\exists r: \forall n \ r \neq a_n$)		$ \text{(cl}(\mathbb{Q}) = \mathbb{R})$	X (Sep ∧ ¬2C)
\mathbb{R}^2_l	✓	X (¬Lin)	X (y = -x is closed in \mathbb{R}^2_I but not Lin)	$\mathbf{Cl}(\mathbb{Q}^2) = \mathbb{R}^2_l)$	X (¬Lin ∧ Sep)
\mathbb{R}^ω (uni)	(Met)	X $(f_r(n) = nth digit of r)$	X (Met ∧ ¬2C)	X (Met ∧ ¬2C)	✓

5. 분리 공리

분리 공리

정의.

- T₀ (콜모고로프): 임의의 x, y ∈ X에 대해 x ∈ U, y ∉ U이거나 y ∈ U, x ∉ U인 열린집합 U가 존재한다.
- T₁ (프레셰): 임의의 x, y ∈ X에 대해 x ∈ U, y ∉ U이고 y ∈ V, x ∉ V인 열린집합 U, V가 존재한다.
- **T₂ (하우스도르프):** 임의의 x, y ∈ X에 대해 x ∈ U, y ∈ V인 서로소 열린집합 U, V가 존재한다.
- T₃ (정칙regular): 임의의 x ∉ F c_{cl} X에 대해 x ∈ U, F c V인 서로소 열린집합 U, V가 존재한다.
 or, 임의의 x ∈ X와 x의 근방 U에 대해 x ∈ V이고 cl(V) c U인 열린집합 V가 존재한다.
- **T**_{3.5} (완전정칙): 임의의 x ∉ F Cd X에 대해 f(x) = 0이고 f(F) = 1인 연속함수 f가 존재한다.
- T₄ (정규normal): 임의의 서로소인 E, F Cd X에 대해 E C U, F C V인 서로소 열린집합 U, V가 존재한다.
 or, 임의의 F Cd X와 F C U Cop X에 대해 F C V이고 cl(V) C U인 열린집합 V가 존재한다.

보존 정리.

- 하우스도르프/정칙/완전정칙 공간의 부분공간은 하우스도르프/정칙/완전정칙이다.
- 하우스도르프/정칙/완전정칙 공간의 임의곱은 하우스도르프/정칙/완전정칙이다.
- cf. 정규 공간에 대해서는 성립하지 않음

다음 조건을 만족하는 X는 정규

- 정칙 + 2차가산
- 하우스도르프 + 콤팩트
- 거리 토폴로지
- 순서 토폴로지

우리손 정리

우리손 보조정리. X가 정규 공간이고 A, B가 X의 닫힌집합일 때, f(A) = 0이고 f(B) = 1인 연속함수 f: X → [0, 1]가 존재한다. (따라서 정규 공간은 완전 정칙이다)

스톤-체크의 정리. X가 완전 정칙이라면 스톤-체크 콤팩트화가 가능하다.

우리손 정리. 정규 + 2차 가산 → 거리화 가능

티체 확장 정리. X가 정규 공간이고 A가 X의 닫힌집합일 때,

- i. 연속함수 f: A → [0, 1]은 f': X → [0, 1]로 확장될 수 있다.
- ii. 연속함수 f: A $\rightarrow \mathbb{R}$ 은 f': X $\rightarrow \mathbb{R}$ 로 확장될 수 있다.